TelecomTV TelecomTV
  • News
  • Videos
  • Channels
  • Events
  • Network Partners
  • Industry Insights
  • Directory
  • Newsletters
  • Digital Platforms and Services
  • Open RAN
  • Cloud Native Telco
  • Telcos and Public Cloud
  • The Green Network
  • Private Networks
  • Open Telco Infra
  • 5G Evolution
  • Access Evolution
  • Edgenomics
  • Network Automation
  • 6G Research and Innovation
  • Security
  • More Topics
  • Network Partners
  • Industry Insights
  • Directory
  • Newsletters
  • |
  • About
  • Contact
  • |
  • Connect with us
  • Digital Platforms and Services
  • Open RAN
  • Cloud Native Telco
  • Telcos and Public Cloud
  • The Green Network
  • Private Networks
  • Open Telco Infra
  • 5G Evolution
  • Access Evolution
  • Edgenomics
  • Network Automation
  • 6G Research & Innovation
  • Security
  • Connect with TelecomTV
  • About
  • Privacy
  • Help
  • Contact
  • Sign In Register Subscribe
    • Subscribe
    • Sign In
    • Register
  • Search

Access Evolution

Access Evolution

NEC Corporation, OCC Corporation and Sumitomo Electric Industries, Ltd. complete first trial of submarine cable with multicore fiber

Via NEC News room

Oct 4, 2021

Tokyo, October 4, 2021, NEC Corporation (NEC; TSE: 6701), its subsidiary OCC Corporation and Sumitomo Electric Industries, Ltd. (Sumitomo Electric; TSE: 5802) announced today that they have completed the first trial of uncoupled (1) 4-core submarine fiber cable (2), and verified its transmission performance to meet the exacting demands of global telecommunications networks.

International data usage is expected to expand by 30-40% CAGR from 2020-2026 (*3), driven by factors such as the growth of 5G mobile data, and the need to share ever more content between data centers distributed around the world. To meet this demand, submarine networks are adopting space division multiplexing (SDM) technology, where the number of independent spatial channels is increased to maximize total system capacity, reduce power consumption and optimize cost per bit. Multicore fiber is now expected to further increase the number of parallel optical fiber cores without increasing the submarine cable size and structure, enabling the second generation of submarine SDM systems.

Multicore fiber submarine cable features

Conventional single mode fiber has a single core within an individual fiber. In contrast, each multicore fiber contains multiple cores (4 cores in this case). This represents a four-fold enlargement in the number of spatial channels for the same amount of optical fibers and with the same fiber structure: each fiber being 250µm diameter (0.25mm) after coating.

The uncoupled 4-core fiber is being deployed within the OCC SC500 series LW (Lightweight) cable, which has a 17mm outer diameter and withstands 8,000 meter water depth. This cable can accommodate up to 32 fibers. With multicore fiber, the number of cores can be increased without increasing the cable diameter, with corresponding benefits in the cost per bit of the cable system.

Transmission performance demonstration

NEC and OCC have demonstrated that the cable's optical transmission performance in the water fully meets the exacting requirements of modern long-haul submarine cables. They further showed that the process of cabling Sumitomo Electric's multicore fiber has no effect on its optical characteristics, achieving excellent attenuation properties.

This research was supported by the Ministry of Internal Affairs and Communications (MIC), Japan, under the initiative "Research and Development of Innovative Optical Network Technology for a Novel Social Infrastructure" (JPMI00316).

Notes: (1) Uncoupled multicore fiber Multicore fiber cables can be broadly divided into uncoupled and coupled multicore fibers. In coupled multicore fibers, the optical signals propagating in the respective cores tend to interfere with each other, requiring special signal processing at the optical receiver. In contrast, uncoupled multicore fibers minimize the interference between the cores, allowing conventional (lower complexity) transmitters/receivers to be used. (2) Source: NEC Corporation, OCC Corporation and Sumitomo Electric Industries, Ltd. research (*3) Source: Telegeography

Related Topics
  • Access Evolution,
  • Asia-Pacific,
  • NEC,
  • Optical,
  • Telecoms Vendors & OEMs,
  • Tracker

More Like This

Access Evolution

SoftBank Corp. Verifies Radio Propagation Characteristics of Wireless Networks Above Ground

Mar 22, 2023

Access Evolution

Openreach’s Equinox 2 FTTP offer would “starve altnets of demand,” claims industry body

Mar 22, 2023

Digital Platforms and Services

What’s up with… AWS, Telecom Italia, Telenet, Liberty Global

Mar 21, 2023

Access Evolution

Project Gigabit contract award unlocks 215,000 home expansion of CityFibre’s networks across Cambridgeshire

Mar 21, 2023

Access Evolution

Eir announces results for full year and fourth quarter 2022

Mar 21, 2023

This content extract was originally sourced from an external website (NEC News room) and is the copyright of the external website owner. TelecomTV is not responsible for the content of external websites. Legal Notices

Email Newsletters

Stay up to date with the latest industry developments: sign up to receive TelecomTV's top news and videos plus exclusive subscriber-only content direct to your inbox – including our daily news briefing and weekly wrap.

Subscribe

Top Picks

Highlights of our content from across TelecomTV today

10:43

MWC23 interview: Mari-Noëlle Jégo-Laveissière, deputy CEO of Orange

12:45

MWC23 interview: Abdu Mudesir, Group CTO, Deutsche Telekom

9:26

MWC23 interview: Greg McCall, Chief Networks Officer, BT

TelecomTV
Company
  • About Us
  • Media Kit
  • Contact Us
Our Brands
  • DSP Leaders World Forum
  • Great Telco Debate
  • TelecomTV Events
Get In Touch
[email protected]
+44 (0) 207 448 1070
Connect With Us

  • Privacy
  • Cookies
  • Terms of Use
  • Legal Notices
  • Help

TelecomTV is produced by the team at Decisive Media.

© Decisive Media Limited 2023. All rights reserved. All brands and products are the trademarks of their respective holder(s).