TelecomTV TelecomTV
  • News
  • Videos
  • Channels
  • Events
  • Network Partners
  • Industry Insights
  • Directory
  • Newsletters
  • Digital Platforms and Services
  • Open RAN
  • Cloud Native Telco
  • Telcos and Public Cloud
  • The Green Network
  • Private Networks
  • Open Telco Infra
  • 5G Evolution
  • Access Evolution
  • Edgenomics
  • Network Automation
  • 6G Research and Innovation
  • Security
  • More Topics
  • Network Partners
  • Industry Insights
  • Directory
  • Newsletters
  • |
  • About
  • Contact
  • |
  • Connect with us
  • Digital Platforms and Services
  • Open RAN
  • Cloud Native Telco
  • Telcos and Public Cloud
  • The Green Network
  • Private Networks
  • Open Telco Infra
  • 5G Evolution
  • Access Evolution
  • Edgenomics
  • Network Automation
  • 6G Research & Innovation
  • Security
  • Connect with TelecomTV
  • About
  • Privacy
  • Help
  • Contact
  • Sign In Register Subscribe
    • Subscribe
    • Sign In
    • Register
  • Search

Industry Announcements

Tracker

Development of Artificial Intelligence issuing work orders based on understanding of on-site <i>kaizen</i> activity and demand fluctuation

Via Hitachi Newsroom

Sep 4, 2015

8% efficiency improvement verified in logistics tasks by integrating AI into IT

Tokyo, September 4, 2015 --- Hitachi, Ltd. (TSE: 6501, “Hitachi”) announced today, the development of artificial intelligence technology (henceforth, AI) which provides appropriate work orders based on an understanding of demand fluctuation and on-site kaizen activity derived from big data accumulated daily in corporate business systems, and its verification in logistics tasks by improving efficiency by 8%. By integrating the AI into business systems, it may become possible to realize efficient operations in a diverse range of areas through human and AI cooperation.

With the progress in information technology (henceforth, IT) in recent years, IT systems have been introduced into various business systems to achieve work efficiency. In the future, it is expected that taking factors such as daily demand fluctuations and changes in accompanying on-site responses on a daily basis, will become increasingly important in raising work efficiency. Conventional business systems however operate on preprogrammed instructions, and therefore in order to reflect on-site kaizen activities or employee ingenuity it is necessary to have a system engineer redesign the system, making it impractical to frequently update the system. Further, there was also the issue that in the event of a non-standard operation becoming necessary, it was also necessary to rewrite the work process and design, thus making it difficult to issue efficient work instructions in a timely manner for changes in demand fluctuation and corresponding on-site changes in response.

To address these issues, Hitachi developed AI which provides appropriate work orders based on an understanding of demand fluctuation and on-site kaizen activity derived from big data accumulated daily in business systems. By integrating the AI into business systems, it will become possible to incorporate on-site kaizen activities or employee ideas while flexibly responding to changes in work conditions or demand fluctuations to realize efficient operations. Main features of the AI are as follows:

1. Understanding of human ideas and kaizen , and translating this to work orders

Although workers on-site conduct tasks based on work orders issued by business systems analyzing big data such as those related to work details or results, in order to conduct the tasks efficiently, workers also devise and implement new approaches and kaizen drawing from experience. The AI automatically analyzes the outcome of these new approaches, and selects processes which produce better results and applies it to the next work order. By understanding and applying the ideas of on-site workers and their kaizen activity to work instructions on a daily basis, it is possible to create an environment where humans and AI mutually cooperate to continuously raise efficiency.

2. Automatically select appropriate data from big data and flexibly respond to demand fluctuation

When developing conventional business systems, expected busy or off-peak season related demand fluctuations are taken into consideration in the design but this has not been able to accommodate for short periods of bad weather or sudden increases in demand. The AI automatically selects and analyses data similar to the actual work conditions of the day from past big data on work detail, work volume and weather, to provide appropriate work instructions in response to short period of bad weather or sudden changes in demand.

3. Quickly intake various forms of big data

Business systems accumulate big data in various alphanumeric forms including symbols, such as amount, time and product codes. Thus, in order to analyze this data with AI, it was necessary to have a domain expert in the business task pre-analyze the data, making data analysis even more time-consuming. The AI analyzes the statistical distribution of the data, and by automatically pre-categorizing the data notation format, enables new data to be integrated quickly without assignment by a human interpreter. As a result, it becomes possible to automatically incorporate daily kaizen by employees or demand fluctuation into the system to produce appropriate and timely work instructions.

To verify the benefits of the AI, an on-site demonstration with a warehouse management system equipped with this technology was conducted, measuring item collection efficiency in a distribution warehouse. Comparative results of a warehouse system with and without this technology, showed an 8% decrease in work time based on instructions issued by the system with this technology.

In addition to logistics, Hitachi intends to apply the AI to various other areas such as finance, transport, manufacturing, healthcare, public works, and distribution, in order to contribute to business operations which can respond flexibly to changes society in an efficient manner.

[image]Simulation results using the AI technology developed on productivity

Related Topics
  • AI & ML,
  • Announcement,
  • Asia-Pacific,
  • Device Software & Apps,
  • Digital Platforms and Services,
  • News,
  • Tracker,
  • Transport and Logistics

More Like This

Digital Platforms and Services

DriveNets network cloud now carries more than 52% of AT&T’s core production traffic

Jan 27, 2023

Digital Platforms and Services

Toyota Tsusho, IIJ, NEC, and NTT Com sign contract with Uzbektelecom for telecommunications infrastructure development project

Jan 27, 2023

Access Evolution

Mobile backhaul transport market forecast to grow to $5.3bn by 2025, according to Dell’Oro Group

Jan 27, 2023

5G Evolution

Elisa’s Financial Statements Release 2022

Jan 27, 2023

Security

BT Group to recruit more than 400 apprentices and graduates

Jan 27, 2023

This content extract was originally sourced from an external website (Hitachi Newsroom) and is the copyright of the external website owner. TelecomTV is not responsible for the content of external websites. Legal Notices

Email Newsletters

Stay up to date with the latest industry developments: sign up to receive TelecomTV's top news and videos plus exclusive subscriber-only content direct to your inbox – including our daily news briefing and weekly wrap.

Subscribe

Top Picks

Highlights of our content from across TelecomTV today

0:46

The Cloud Native Telco Summit returns this September!

8:32

Azita Arvani on Being a Female Leader at Rakuten Symphony

16:19

AT&T Amy Zwarico on securing telco applications in the public cloud

1:44

Join us for the greatest industry debate of the year!

TelecomTV
Company
  • About Us
  • Media Kit
  • Contact Us
Our Brands
  • DSP Leaders World Forum
  • Great Telco Debate
  • TelecomTV Events
Get In Touch
[email protected]
+44 (0) 207 448 1070
Connect With Us
  • Privacy
  • Cookies
  • Terms of Use
  • Legal Notices
  • Help

TelecomTV is produced by the team at Decisive Media.

© Decisive Media Limited 2023. All rights reserved. All brands and products are the trademarks of their respective holder(s).